(3) 現地調査手法の検討

予測手法の検討の結果,地下水流動の予測手法として浸透流解析を選定したことから,特に地質や地下水の状況について,より詳細な情報の入手が必要と判断された。

これに基づいて,表 1.21の通り,現地調査手法の検討を行なった。

表 1.21 現地調査手法の検討内容

- 本ま口	四本在口上四本土南本格兰(4円
調査項目	調査項目と調査内容の検討結果
水理地質構造	調査項目の設定根拠
	事業区間周辺における地層分布の詳細を把握するとともに ,地下
	水流動の基礎となる水理地質特性を把握するために実施。
	調査方法
	66~ 116mm の機械ボーリングと各種の原位置試験や土質試
	験を実施するとともに,沖積層地下水・洪積層地下水の各々を対象
	とする観測孔に仕上げた。
	また、事業区間センター付近に洪積層地下水対象の揚水井と沖積
	層・洪積層の各々を対象とした地下水観測孔を設置し,揚水試験も
	実施(予備揚水試験,段階揚水試験,連続揚水試験(72 時間))。
	調査地点
	地層・地下水分布を三次元的に把握するとともに,事後調査にお
	ける地下水観測を想定し,事業区間の両側に設定(計 5 箇所)。
W 1.34-51	
地下水流動	調査項目の設定根拠
	各地層の水理特性(水理定数や地下水頭,流動区間の垂直分布や
	規模,地下水流動方向・流速等)を把握するために実施。
	調査方法
	機械ボーリングに伴う原位置試験として,現場透水試験,多点温
	度検層,地下水流向流速測定を実施。また,事業区間近傍で揚水試
	験を実施した。
	調査地点
	機械ボーリング地点(事業区間両側・計5箇所)
	揚水試験:事業区間センターに洪積層対象の揚水井を設置。
	沖積層・洪積層地下水の各々を対象とした観測井を
	横断方向に配置。
 地下水変動	調査項目の設定根拠
地下小友勤 	調査項目の設定依拠 地下水位の季節変動を含めた把握のために実施。
	調査方法
	調査ガ伝 調査期間は1年間とし,代表地点については連続観測,その他に
	調査期間は「平間とし、代表地点にういては建続観測、その他に ついては月1回の定期観測とした(地下水継続観測)。
	ういては月「回の定期観測こした(地下水継続観測)。 また地域概況調査における水位測定は,降水量傾向から豊水期
	また地域低流調査にのける小位別だは,降小量傾向から豊小期 (地下水位上昇期)と判断される夏季に行なったので,渇水期(地下
	(地下尓位工弁期) こ判断される夏字に行なりたので、周尔期(地下 水位低下期) のデータを取得するため、冬季に全井戸・観測孔を対象
	「「一斉水位測定を実施(地下水一斉観測)。
	に 月小位別たを実施(地下小 月観測)。 調査地点
	調査地点 地下水観測孔,地域概況調査で把握された井戸。
	26 广小眠从几,26.37%从加酮且(1612年C1612开厂。

室内土質試験:土質特性を把握するため,物理試験,力学試験を実施